From which we have

T =T, — (T, — T3 exp(— FP). (13)

Equation (13), with allowance for the pore cooling criterion [4] and the dimensionless temperature T* =
(T — Ty/ Ty is reduced to the form

/ *
T* =T exp (—Kn —}—)— —Z—O—> .
x 0§

Figure 3 shows the temperature distribution in the porous half-space in the flow of air, helium, and hy-
drogen. It can be seen from the graph that, to maintain a certain thermal state in the porous body during cool-
ing with a gas, it is best touse a substance with a lower molecular weight.

NOTATION

T, temperature; c, specific heat of the gas; p, density of the gas; A, effective thermal conductivity of the
porous-body —coolant system; 7, 8, Chaplygin variables; n +1, degree of filtration (filiration is linear at n = 0);
x = ViM /P, dimensionless filtration parameter; y* =y /M, dimensionless stream function; P* = P/ P,
dimensionless pressure; «, constant characterizing the porous medium and coolant; u(T), absolute viscosity
of the gas; £(v), function determining the filtration law in each specific case; x* = x/d, dimensionless coor-
dinate; d, characteristic dimension; R, gas constant.
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THEORY OF THE FLOW AND CONDUCTION OF
INHOMOGENEOUS MEDIA
I. BASIC MODEL OF AN INHOMOGENEOUS MEDIUM

G. N. Dul'nev and V. V. Novikov UDC 536.21

A basic model of an inhomogeneous medium is outlined and, by a combination of the methods of
flow theory and reduction to an elementary cell, an analytic dependence is obtained for the con-
duction of such a medium. :

In studying the conduction of inhomogeneous materials with a random distribution of components, there
has been steadily increasing use, in recent years, of a new method of investigation, called flow theory [1~-3].
For a binary inhomogeneous system, in which the conductivity of one component A; = 0 is nonzero, while the
other is zero A, = 0, the effective conductivity A, according to flow theory, is (31
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A=A (_—.i) . M =0.150.03; k= 1.6+ 0.4. (1)

1 —m,

With an accuracy that is acceptable for practical calculations, Eq. (1) describes the effective conductivity
of such a binary system and also takes account of the presence of jump conductivity when the volume concentra-
tion m; reaches some critical value m;=mg, the so-called flow threshold.

For materials with a nonzero conductivity ratio of the components, v = AZ/AI’ a combination of the flow
and effective-medium methods [1, 2] or of the flow theory and reduction to an elementary cell [3] is used in
describing transfer processes. The latter combination is very clear, and leads to good agreement of the cal-
culational and experimental data when 0 = » = 1071, while the results of calculation are toohigh when » > 1071,
The reason for this disagreement is associated with certain assumptions adopted in analyzing the transfer pro-
cess and in constructing a model of the inhomogeneous binary system; a refined (basic) model of such a system
is considered below.

The structure of a binary inhomogeneous random system is considered and, following the method adopted
in [3], elementary cells are modeled for various values of the component concentrations. Note that the par-
ticles in the system are isomeric and the whole volume of the material is filied without vacancies. With change
in bulk concentration my of the first component in the range 0 = m; = mg, the continuous binder includes iso-
lated inclusions (isolated clusters, IC) of the first component (Fig. 1a). The elementary-cell model is a cube of
side L, with individual cubic inclusions (IC model) of dimensions I, and volume concentration my = (I /L) 3 the
inclusions are a distance 2(L — 1) apart (Fig. 2a).

In the concentration range mg =< my = 0.5, connections appear between the isolated clusters (IC), aird the
IC are transiormed to an infinite cluster (InC); transition occurs abruptly at m; =me (Fig. 1b). In the model,
these structural changes are shown in Fig. 2b, where the isolated clusters are connected by bridges of cross-
sectional area I3, When m; =m, = 0.5, two equivalent infinite clusters are formed in the material (Fig. lc);
the correspondmg model is shown in ¥Fig. 2¢, in the form of an elementary cell of the system with interpenetrat-
ing components.

Further increase in the volume concentration of the first component m; > 0.5 leads to structural change
in the oppesite order, i.e., the infinite cluster consisting of the second component begins to diminish (Fig. 1d)
and, at m, =mg, there is an abrupt transition from InC to IC (Fig. 1e), while the infinite cluster of the first
component grows continuously. Elementary cells of the model of this structure are shown in Fig. 2e,f.

As shown in [3], the greatest difficulty is in determining the geometric parameters of the elementary cell
245 15 and their relation to the real mean extent Ly, of an infinite cluster and its mean cross-sectional area

SthC-

The resistance of a binary system consisting of conducting and nonconducting particles (v = 0) is con-
sidered. The resistance R of such a cube is the resistance Ryy¢ of the conducting infinite cluster, since the
flux propagates only through the conducting component

R=Ryq. R=LIAS), Ryc=lumcAMSpc) S= Lt 2)
It follows from these dependences that

A=AS, Si=Sic LISL e ) (3)
Comparison of Egs. (1) and (3) gives

§1=(”ﬁ;’71c_)"6, (4)
l—m, |

the law of variation of the relative effective cross section §1 of the conducting InC, in which both the complex
structure of the InC and the probabilistic character of its formation are taken into account. I is now hecessary
to relate Sl to the geometric parameters of the elementary cell,

The elementary-cell resistance of the model with » = 0 and "adiabatic" division of the cell is [4]
R = LJ(AS; Hy), (5)

where S'1 is the cross-sectional area of the elementary cell perpendicular to the heat-carrier flux and occupied
by the conducting component; Hy is a correcting function, the meaning of which will be elucidated below.
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Fig. 1. Plane representation of the structure of a binary inhomo-
geneous random system: a) my < mg; b) me < my < 0.5 ¢) my =my;
d) 0.5 <my < (1~mg)e)(@d—mg) <my<1.
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F1g 2. Model of the elementary cell of a binary inhomogeneous
system: a) m; < mg; b) mg < my < 0.5; ¢) my < my; d) 0.5 < my <
(1—-mg);e) 1—-mg) <my <1.

From Eqgs. (2) and (5), the effective conductivity of the elementary cell may be written in the form
A=ASi Hy Si=Sus. (6)

Since the effe_ctive conductivities of the sample and the elementary cell are equal, it follows from Egs. (6)
and (3) that S{H, =S, and, in view of Eq. (4), it is found that

Hy — (u)"“ 1 (7)
1—~/7'lc Sl

Note that the derivation of Eq. (7) employs Ed. (1), which is in good agreement with the experimental data
on the conductivity of an extremely inhomogeneous binary mixture (» =0). Hence, the correcting function H,
allows certain of the constraints imposed above in consutrcting the model to be lifted: specifically, the pres-
ence of branches that are closed to the flow of form 1 or individual isolated clusters 2 at m; = m; (Fig. 1b).
In addition, the errors due to the approximate mathematical description used subsequently in the model are re-~
duced. )
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An expression for §'1 is now determined. The range of concentration variation me¢ = my = 0.5 is con-
sidered first. In the model of Fig. 2b, the IC are connected by bridges of square cross section, i.e., S =l§.

The volume concentration of an infinite cluster with variation m, = m, = 0.5 is related to the model di-
mensions Iy, 15, L as follows

v 3L — 1)+ 8
= = _LD_)__ (8)

An expression for I; of the connecting bridge is obtained from this equation

|

— / J— —_— 3 j—
I = (L)ZZSI L m=h g b ©)
L 3 —

1—14, L

—

From Eqgs. (4) and (9), Zz of the central core of the infinite cluster may be determined: I 5 =flmy, mep).
However, let us proceed differently: assume that, in the range of concentration variation me = my < 0.5, the
dimengion I, of the central core remains unchanged and equal to that of the IC before jump conductior, that is

Z’:: (Tz)nlax = i/“m—c‘ (10)
Thus, it is found from Eqgs. (9) and (10)
s 1 m—m 11

I 0.5 = my = (1 ~mg), the components are spatially changed by bridges (Fig. 2d) in comparison with the
preceding case m, = m, = 0.5, and 8; will be

Si=S—f6H—2(1—1) 4 (12)

Here I, is the dimension of the central cube, now consisting of the poorly conducting component (A, = 0) and
is equal, as before, to I, = mé 3, while l% is the cross-sectional area of the isolational bridges connecting the
central cubes. Writing an equation for m, analogous to Eq. (8}, l% is determined

I my—m, (13)

: 3 T ml/v

By

Then Eq. (12) may be rewritten in the form

Si=1- m2/3 — _17%: [y — mg) (1 — ml/3)-g)t/2. (14)
If 1 —-m, = my = 1, then there are isolated cubes of poorly conducting component in the conducting mass

(Fig. 2e); therefore, S'i =8 — 13; taking into account that [, = m§/3, it is found that
Sy =1-—m"> (15)

As already noted, formulas for the function H; have been obtained for the case of a limiting conductivity
ratio of the components, v = 0.

The correcting function H(») is now considered for the more general case v = 0, and it is taken into ac-
count that it must take the value H; at » =0 and is equal to unify at v =1, since we are dealing here with a
single material in which there are no deviations of the current lines, that is

H{(V)mo = Hy, H®)v=1 = 1. (16)
This equation is satisfied by the function
H(v) = H, + g (v) (1 — H)), am
where g(») is an unknown function depending only on v.
The function g(v) is written in the form of a series expansion

g =Y aw. (18)

n=0
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Fig. 3. Equivalent coupling scheme for the thermal resistances of the
elementary cell.

Fig. 4. Length ratio of the infinite cluster in an inhomogeneous medium
and the model, with various concentration values of the components.

In determining g(v), the starting point adopted is an additional requirement of continuity of the first derivative
dA/dmy at three points with m,; =m¢, 0.5, and (1 — mg), where qualitative change in the model occurs: transi-
tion from the IC model to the InC model (fo a model with equivalent interpenetrating components) and from the
InC model to the IC model. The calculations show that this requirement may be satisfied if it is assumed that
g0, 2)=108, g(0, 5)=10.9, g(0, 8=0.98. , (19)

In addition, the condition in Eq. (16) leads to the result

g0)=0, g(h=1 (20)
Thus, Eq. (19) may be limited to the first five terms of the expansion, and the coefficients a, may be
determined from the conditions in Egs. (19) and (20); after transformation, it is found that
g (v) = 5.53v — 8.30v2 - 3.23v 4 0.54v%, (21)

The transfer of heat carriers in the given model, with 0 = » = 1, is described by dividing it into in-
finitely thin planes that are impenetrable to the flow [3, 4]. The total mean flux j from the leading to the trail-
ing wall of the cube (Fig. 2b) is divided into a series of mean fluxes

j=h+ i+ 2, + i (22)
In Eq. (22), j; is the total flux passing through the first component (InC) of conductivity A ji; is the total flux
passing successively through the second component (conductivity A,) over the length (L —1,) and the first com-
ponent over the length 7y j;z is the total flux passing successively through the second component over the length
(L — ;) and the first component over the length I,; j, is the total flux passing through the second component. The
resistance Rj to the passage of flux j; with a potential difference AU is by definition
ji = AU/R;, (23)

and the resistance R; of the individual sections i is calculated from the simplest formula for plane walls
R; = Li/(AsS5), (24)
where S;, Lj are the cross-sectional area and length of section i. The equivalent coupling scheme of the re-

sistances Rj in the elementary cell, according to Eq. (22), for the fluxes is shown in Fig. 3. The total resist-
ance R = L/(AS) is equated to the expression for R found from the scheme of Fig. 3

Rt = RT' + (Ry + Ry)™* + (Ru + Re)™* 4 (Ry + Ry)* + Ry . (25)

Substituting for the resistances R;j and geometric parameters of the elementary cell for various ranges of varia-
tion in the volume concentration m, from Tables 1 and 2 into Eq. (25), the final result obtained affer appropriate
manipulations is
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TABLE 1. Resistance Values in Eq. (25)

l;ag;g;;)f vare: (a:ﬁf?/L) (RetRy) E—R(:‘;eﬁigt)z:a Rea
0 my L imy o *1~—<1V‘};:)—72 ® (vSy)~t
0,5 < my(1 =) Sy v_(v@_l) : x7—1<(1v:71‘))7 o5
(1—m) <my L (_]'H)‘1 *N—j'(%ﬂ 12 o
Oz

TABLE 2. Geometric-Parameter Values in Egs. (25) and (26)

Range of varia- — = - — —
ton m; S : Se Sa h Iy
0y Lt 0 m%” I— m%’S 0 m}/s
nt, <K my & 0,5 Lomeme 2/3 T 257 1T | fea/2 | 13
e s Y 3 I_mé/s mc‘ ——Sl 1—‘19—211(1—12) (SI) mc
I omy—mg 1/ 1/3
— ; = | e 2 Sy)l/* |m
05 Ky < () | 1= T2, (1T | m2/° =5 | 737 1 gvs | %) ¢
(l—mym L1 1——§2 17153/3 0 0 m;/r“)
a—1 < - —
<= - S, L(l—1) -
A=A S H) + Ay [ 2 __ 491 2 )4 ALS,, (26)
1—(1—v" ], 1 —(1—v9g | -

where @ =1, if mj < 0.5, and @ ==1, if m,; = 0.5; the geometric parameters Iy, I3 Sy, 8y, S; are determined in
accordance with Table 2.

Turning briefly to the possible physical treatment of the correcting function Hy, Hy may be determined, on
the basis of Egs. (3), (6), and (7), from the expression

Hy= SIc_L 27)

When m, =< my =< 0.5 and » =0, it is natural to assume that the mean cross-sectional area of the bridge
in the model (Fig. 2b) is Sy i-€.; Spue =Sis and so

Hy = (L /Lyt (28)

The ratio Ly,c/ L characterizes the branching of InC. In [5], in investigating the InC topology, it was
noted that Linc/L ~ (my — mc)“1 when mg = my = 0.5. In the present case, according to Egs. (7) and (11)

Lmc 1 (1—m)"° ! (29)
=5 —_qi/3 0.6 -
L 3 l—m {my —m,)

How the length of the infinite cluster changes with variationin the volume concentration is shown in Fig. 4:
when my =m, = 0.5, the InC length is equal to the length of the sample, i.e., Lip¢ = L; when my — mg, Ly — .
Further, if it is assumed that the condition Lyzc = L is satisfied when m,; > 0.5, it follows from Eq. (28) that
Hy =Spc/Si i-e., the function Hy defined by Eqs. (7), (14), and (16) shows how the current line density in InC
differs from the current line densities in the model.

In conclusion, discussion turns to the above assumption in Eq. (10}, regarding the constancy of the cen-
tral-core dimension [, of the infinife cluster with concentration variation me = my = 0.5. In this case, tran-
sition to a model with interpenetrating components does not occur strictly at m; = 0.5 but in a certain range m; =
0.5-0.525 if m¢ takes one of the values in the range 0.125-0.18. Thus, for example, the given transition occurs
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Fig. 5. Curves of the generalized conductivity of an extremely in-
homogeneous medium (v =0) as a function of the volume concentra-
tion: according to numerical calculations of [1] (1) and [6] (2); ac-
cording to Eq. (26) (3); and according to full-scale experiments for
different materials [1-3].

Fig. 6. Curves of the generalized conductivity as a function of the
concentration with various conductivity ratios of the inhomogeneous
binary medium: 1) according to Eq. (26); 2) computer modeling {6].

at my = 0.507 if mg =0.15 and at my = 0.525 if m, =0.18. This model is plausible, since this structure is a
statistical system, for which probabilistic laws are valid, and hence transition to a model with interpenetrating,
geometrically equivalent components occurs in a certain range my = 0.5-0.525. It would be possible to proceed
by other means, and require that the following condition be satisfied: Transition to a model with geometrically
equivalent interpenetrating components occurs at my =0.5. It is then necessary to assume that the volume con-
centration of the isolated cluster m, is not constant, but varies. Calculations show that the final values of the
conductivity A obtained in realizing these models differ insignificantly. In the present work, the first, simpler
model is realized; other possible variants of this basic model will be considered in the future.

The dependence A /Ay =f(m,) when v =0, plotted from the results of numerical calculations and full-scale
experiments, is shown in Fig. 5. As follows from Fig. 5, the dependence occupies a definite region, which is
a consequence not only of the accuracy of the experiments and computer calculations but also of the statistical
character of the process under study. Curves of A/A, =f(m,) plotted from numerical-modeling data [6] and
from Eq. (26) lie in the central part of the region. It may be that the two curves are equally likely, although the
difference between them sometimes reaches 20%, whereas the boundaries of the region are up to 509 apart.

Curves of A/Ay = f(my, ») plotted according to the results of numerical modeling [6] and Eq. (26) are
compared in Fig. 6. Taking account of the above remarks, it may be concluded that there is good agreement
between the results of the two different methods of analyzing transfer processes through inhomogeneous media.

NOTATION

A, effective conductivity; A4, conductivity of the i-th component; mj, volume concentration of the i-th com-
ponent; mg, flow threshold; H;, correcting function; » =A,/A; Linc» Sgpc» length and cross-sectional area of
the infinite cluster.
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KINETICS OF THE SELF-SIMILAR CONDITIONS OF DIFFUSIONAL
COMBUSTION OF POLYDISPERSE LIQUID FUEL

Yu. M. Goldobin UDC 621.1.016:536.46

On the basis of the kinetic equation for the particle distribution function with respect to the
radius, a method is proposed for calculating the processes of heat and mass transfer in the
combustion of liquid fuel of a polydisperse melf.

In the ignition of a liquid-drop or dustlike fuel in various devices, the determining role is played by the
kinetics of particle combustion in a medium of oxidant diluted with inert gas. The problems arising here are
very complex in view of their nonlinearity, and therefore they are solved, especially for the case of various
engineering devices, by means of experimental methods or numerical calculations using a computer. In the
latter case, the calculation of the combustion kinetics of a polydisperse particle system is undertaken by
dividing the initial particle size distribution into narrow fractions [1-3]. An alternative approach which has
been successfully used in calculations of vaporization and solution [4-6] is to use the kinetic equation for the
particle distribution with respect to the radius.

In the present work, on the basis of this approach [5, 6], the simplest model of quasidiffusional combustion
of polydisperse liquid-fuel drops in a volume with adiabatic walls is considered.

As in [6], it is assumed that the fuel drops are spherical in form; that their mass concentration is small;
that the product consumption corresponds to stoichiometry of the reaction; and that there is no breakdown or
coagulation of the drops; that the fuel is injected into gas confaining oxidant with a temperature of the medi-
um Tye ., above the ignition temperature. The assumptions adopted also hold in real conditions.

Polydispersity of the drops in the combustion process will be taken into account by the kinetic equation
for the particle distribution function with respect to the radius f(rg, t) [5, 6]

Of(rs, 1) O AW (s, £)] =0, 1
- ”T“ars [Flrs, Wz, ©)

for which the following relation will hold
AN = Nof (i, D) drgi flgs 0)=Fols)s [ Folrg) drg = 1. (2)
0

In {6], the distribution function f(rg, t) for self-similar quasisteady conditions of evaporation was obtained
in general form. Analogous determination of f(rs, t) is possible in combustion if the combustion rate of a single
fuel drop W(rs, t) is known.

The function W(rg, t) is obtained on the basis of the quasisteady diffusional combustion of a drop, under
the assumption that the simplest reaction between fuel vapor and oxidant occurs in the flame. At high temper-
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