
F r o m  which we have 

T = T 1 - -  ( T  1 - -  T2) exp (--  FP). (13) 

Equation (13), with allowance for  the pore  cooling c r i t e r ion  [4] and the d imens ionless  t e m p e r a t u r e  T* = 
(T - T i ) / T  1, is reduced to the f o r m  

P* Vo) 
T* ---- T* exp --K,~ 

~ ~ 

Figure  3 shows the t e m p e r a t u r e  dis t r ibut ion in the porous  ha l f - space  in the flow of a i r ,  hel ium,  and hy-  
drogen.  It can be seen  f r o m  the graph  that,  to mainta in  a ce r ta in  t h e r m a l  s ta te  in the porous  body during cool-  
ing with a gas,  it is best  r ouse  a substance  with a lower  molecu la r  weight.  

NOTATION 

T, t e m p e r a t u r e ;  c, specif ic  heat  of the gas;  p ,  densi ty of the gas;  k ,  effect ive t h e r m a l  conductivity of the 
p o r o u s - b o d y - c o o l a n t  sys t em;  r ,  fi, Chaplygin va r i ab les ;  n + 1, degree  of f i l t ra t ion  (fil tration is l inea r  at  n = 0); 

= VnM/P0  ~, d imens ion less  f i l t ra t ion p a r a m e t e r ;  r = r  d imens ion less  s t r e a m  function; P* = P / P 0 ,  
d imens ion less  p r e s s u r e ;  ~, constant cha rac te r i z ing  the porous  med ium and coolant; # (T), absolute v i scos i ty  
of the gas;  f(v), function de termining  the f i l t ra t ion law in each specif ic  case;  x* = x / d ,  d imens ionless  c o o r -  
dinate; d, cha r ac t e r i s t i c  dimension;  R, gas  constant .  
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THEORY OF THE FLOW AND CONDUCTION OF 

INHOMOGENEOUS MEDIA 

I. BASIC MODEL OF AN INHOMOGENEOUS MEDIUM 

G. N. Dul'nev and V. V. Novikov UDC 536.21 

A bas ic  model  of an inhomogoneous med ium is outlined and, by a combinat ion of the methods of 
flow theory and reduction to an e l e m e n t a r y  cell ,  an analyt ic  dependence is obtained for  the con-  
duction of such a medium.  

In studying the conduction of inhomogeaeous m a t e r i a l s  with a random dis t r ibut ion of components ,  there  
has been s teadi ly  increas ing  use,  in recen t  y e a r s ,  of a new method of invest igation,  cal led flow theory  [1-3]. 
F o r  a binary irahomogeneous s y s t em ,  in which the conductivity of one component  A1 # 0 is nonzero,  while the 
other  is  ze ro  A 2 = 0, the effect ive conductivity A, according  to flow theory ,  is [3] 
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/T/1 - -  /T/c / h  
A = A ~  \ l ~ m o  ] m~=0~154-0.03; k---- 1 s 1 7 7  (1) 

With an accuracy  that is acceptable for  prac t ica l  calculations,  Eq. (1) descr ibes  the effective conductivity 
of such a binary sys tem and also takes account of the presence  of jump conductivity when the volume concent ra-  
tion m s reaches  some cr i t ical  value ml= m c, the so-ca l led  flow threshold.  

Fo r  mater ia l s  with a nomzero conductivity ra t io  of the components,  v = A2/At ,  a combination of the flow 
and ef fec t ive-medium methods [1, 2] or  of the flow theory and reduction to an e lementary  cell [3] is used in 
descr ibing t r ans f e r  p rocesses .  The lat ter  combination is very  clear ,  and leads to good agreement  of the ca l -  
culational and experimental  data when 0 -< v _ 10 -i ,  while the results  of calculation are  toohigh when v > 10 -1. 
Tile reason fo r  this d isagreement  is associa ted  with cer ta in  assumptions adopted in analyzing the t r ans fe r  p r o -  
cess and in construct ing a model of the inhomogeneous binary sys tem;  a refined (basic) model of such a sys tem 
is considered below. 

The s t ruc ture  of a binary inhomogeneous random sys tem is considered and, following the method adopted 
in [3], e lementary  cells are  modeled for various values of the component concentrat ions.  Note that the p a r -  
t icles in the sys tem are i somer ic  and the whole volume of the mater ia l  is filled without vacancies .  With change 
in bulk concentrat ion m 1 of the f i r s t  component in the range 0 _ ml ~ m c, the continuous binder includes iso-  
lated inclusions (isolated c lus ters ,  IC) of the f i r s t  component {Fig. la).  The e lementa ry-ce l l  model is a cube of 
side L, with individual cubic inclusions (IC model) of dimensions l 2 and volume concentrat ion m s = (/2/L)a; the 
inclusions are a distance 2 ( L - / 2 )  apar t  (Fig. 2a). 

In the concentrat ion range mc ~ m s -< 0.5, connections appear  between the isolated c lus ters  (IC), and the 
IC are  t r ans fo rmed  to an hffinite c lus te r  (InC); t ransi t ion occurs  abruptly at ml = mc (Fig. lb). hi the model,  
these s t ruc tura l  changes are  shown in Fig. 2b, where the isolated c lusters  are  connected by bridges of c r o s s -  
sectional  a rea  l~. When mt = m 2 = 0.5, two equivalent infinite c lus ters  are  formed in the mater ia l  (Fig. lc);  
the corresponding model is shown in Fig.  2c, in the form of an e lementary  cell of the sys tem with interpenetra t -  
ing components.  

Fur the r  increase  in the volume concentrat ion of the f i r s t  component mt > 0.5 leads to s t ruc tura l  change 
in the opposite order ,  i.e., the infinite c lus ter  consisting of the second component begins to diminish (Fig. ld) 
and, at m 2 = m c, there  is an abrupt t ransi t ion f rom InC to IC (Fig. lo), while the infinite c lus ter  of the f i r s t  
component grows continuously. Elementary cells of the model of this s t ruc ture  are  shown in Fig. 2e,f. 

As shown in [3], the greatest, difficulty is in determining the geomet r ic  pa rame te r s  of the e lementary  cell 
Z s, 12 and their relation to the real mean e~ent LInC of an infinite cluster and its mean cross-sectional area 

SInC. 

The resistance of a binary system consisting os conducting and nonconducting particles (v = 0) is con- 

sidered. The resistance R of such a cube is the resistance RIn C of the conducting infinite cluster, since the 
flux propagates only through the conducting component 

R = Rin e , R = LI(AS),  Rinc--.LInCI(AISInc ), S = L ~. (2) 

It follows f rom these dependences that 

A = AIS--I, ~ ---- Sln c L](SLInC). (3) 

Comparison of Eqs.  (1) and (3) gives 

t i " (4) 

~he law of variat ion of the relative effective c ross  sect ion S1 of the conducting IaC, in which both the complex 
s t ruc ture  of the InC and the probabil is t ic  cha rac t e r  of its format ion are taken into account. It is now neces sa ry  
to relate ~l to the geometr ic  pa r ame te r s  of the e lementary  cell. 

The e l emen ta ry -ce l l  res i s tance  of the model with v = 0 and "adiabatic" division of the cell is [4] 

t7 = Li(A~SI H1), (5) 

where S~ is the c ross - sec t iona l  a rea  of the e lementary  cell perpendicular  to the h e a t - c a r r i e r  flux and occupied 
by the conducting component; H s is a cor rec t ing  function, the meaning of which will be elucidated below. 
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Fig .  1. P l a n e  r e p r e s e n t a t i o n  of the  s t r u c t u r e  of a b i n a r y  i n h o m o -  

geneous  r a n d o m  s y s t e m :  a) m 1 < me;  b) m c < m 1 < 0.5; c) m 1 = m2; 
d) 0.5 < m 1 < ( 1 - m c ) ; e )  ( 1 - m c )  < m 1 < 1. 

/ 

Fig. 2. Model of the elementary cell of a binary inhomogeneous 

system: a) m i < me; b) m c < m I < 0.5; c) m i < m2;d) 0.5 K m I < 

( 1 - m c ) ; e )  ( 1 - m  c) < m 1 < 1. 

F r o m  Eqs .  (2) and (5), the e f f ec t ive  conduc t iv i t y  of the  e l e m e n t a r y  c e l l  m a y  be w r i t t e n  in the  f o r m  

A = ~.,~; . ~ ,  ~ ;  =: s;/s. (6) 

Since  the  e f f ec t ive  c o n d u e t i v i t i e s  of the s a m p l e  and the  e l e m e n t a r y  ce l l  a r e  equa l ,  i t  fo l lows  f r o m  Eqs .  (6) 
and (3) tha t  ~IH1 = Sl and,  in view of Eq.  (4), i t  i s  found tha t  

n l : :  ~ 
k 1 - m e /  5; 

(7) 

Note tha t  the  d e r i v a t i o n  of Eq.  (7) e m p l o y s  Eq.  (1), wh ich  i s  in good  a g r e e m e n t  wi th  the  e x p e r i m e n t a l  d a t a  
on the  conduc t iv i ty  of an e x t r e m e l y  i nhomogeneous  b i n a r y  m i x t u r e  (u = 0). Hence ,  the c o r r e c t i n g  func t ion  H i 
a l lows  c e r t a i n  of the c o n s t r a i n t s  i m p o s e d  above  in c o n s u t r c t i n g  the  m o d e l  to  be l i f ted :  s p e c i f i c a l l y ,  the p r e s -  
ence  of b r a n c h e s  tha t  a r e  c l o s e d  to  the flow of f o r m  1 o r  i nd iv idua l  i s o l a t e d  c l u s t e r s  2 a t  m i  >_ m e (F ig .  l b ) .  
In add i t ion ,  the  e r r o r s  due to the a p p r o x i m a t e  m a t h e m a t i c a l  d e s c r i p t i o n  u s e d  s u b s e q u e n t l y  in the  m o d e l  a r e  r e -  
duced .  
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An expression for gt i is now determined. The range of concentration variation me -< m I <- 0.5 is con- 
sidered first. In the model of Fig. 2b, the IC are connected by bridges of square cross section, i.e., Sl = l~. 

The volume concentration of an infinite cluster with variation m e _< m I _ 0.5 is related to the model di- 

mensions l i, I v L as follows 

v ,  _ 3z~ (L - -  l~) + z$ (8) 
m l - - ~ -  - L~ 

An expression for l i of the connecting bridge is obtained from this equation 

3 1--1~ ; L.:= ~ L  " (9) 

F r o m  E q s .  (4) and (9), 12 of t he  c e n t r a l  c o r e  of the  in f in i t e  c l u s t e r  may  be d e t e r m i n e d :  [2 = f (ml ,  me)-  
H o w e v e r ,  l e t  us p r o c e e d  d i f f e r e n t l y :  a s s u m e  tha t ,  in  the r a n g e  of  c o n c e n t r a t i o n  v a r i a t i o n  mc  -< m 1 -< 0.5, the  
d i m e n s i o n  [2 of the c e n t r a l  c o r e  r e m a i n s  unchanged  and equa l  to tha t  of the IC be fo re  j ump  conduct ion ,  t ha t  i s  

~--(~)max = ~/Tt---c-. (10) 

Thus, it is found from Eqs. (9) and (i 0) 

SI - 1 m l  - -  m ~  (ii) 
3 1 -- ,n~ 

If 0.5 <- m 1 -< (1 - mc) ,  the c o m p o n e n t s  a r e  s p a t i a l l y  changed  by b r i d g e s  (F ig .  2d) in c o m p a r i s o n  wi th  the 
? 

p r e c e d i n g  c a s e  m c ~ m l  __ 0.5, and  S~ wi l l  be 

Si = S - -  t,~, --2(I --Z~)Z. (12) 

Here ~2 is the dimension of the centra l  cube, now consist ing of the poor ly  conducting component (A2 = 0) and 
is equal, as before, to ~2 = talc/3, while l~ is the cross-sectional area of the isolational bridges connecting the 

central cubes. Writing an equation for m 2 analogous to Eq. (8), l~ is determined 

7~--  I " h - - r G  . (13) 
3 1 - - m  1/3 

c 

Then Eq. (12) may be rewritten in the form 

51 :- l - , U 3  2 I(m,,-mc) 1-n#c/3)- , l ' / - t  (14) 

If i - m c _< m I <_ 1, then  t h e r e  a r e  i s o l a t e d  cubes  of p o o r l y  conduct ing  componen t  in the  conduc t ing  m a s s  
(Fig. 2e); therefore, S' i =S - [~; taking into account that [2 = m~/3, it is found that 

S; = 1 - m , Y L  (15) 

As a l r e a d y  no ted ,  f o r m u l a s  f o r  the func t ion  H 1 have  been  ob t a ined  f o r  the  c a s e  of a l i m i t i n g  conduc t iv i t y  
ratio of the components, v = 0. 

The correcting function H(p) is now considered for the more general case v # 0, and it is taken into ac- 

count that it must take the value H i at v = 0 and is equal to unity at p = i, since we are dealing here with a 

single material in which there are no deviations of the current lines, that is 

H (v)t,,_o -- H1, H (v)l,.-, --  1. (16) 

Th i s  equa t ion  i s  s a t i s f i e d  by the func t ion  

H(v) -- Iql § g(v) (1 --H1),  (17) 

where g(v) is a~ unknown function depending only on v. 

The function g(v) is written in the form of a series expansion 

g(v)-- ~ a~v". (18) 
Iz~O 
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Fig.  3. Equivalent coupling scheme  fo r  the t he rma l  r e s i s t a n c e s  of the 
e l e m e n t a r y  cell.  

Fig. 4. Length ra t io  of the infinite c lus t e r  in an inhomogeneous medium 
and the model ,  with var ious  concentrat ion values of the components .  

In de termining g(v),  the s ta r t ing  point adopted is an additional r equ i r emen t  of continuity of the f i r s t  der iva t ive  
dA/dmt  at three  points with m 1 = m c, 0.5, and (1 - m e ) ,  where  qualitative change in the model  occurs:  t r a n s i -  
tion f r o m  the IC model to the InC model (to a model  with equivalent in te rpenet ra t ing  components) and f rom the 
InC model to the IC model .  The calculat ions show that  this r equ i r emen t  may be sa t i s f ied  if it is a s sumed  that  

g(o ,  2) = 0.8, g(o ,  5) = 0.9, e (o ,  8) = o . 9 s  (19) 

In addition, the condition in Eq. (16) leads to the r e su l t  

g(O)=O, g ( 1 ) =  1. (20) 

Thus, Eq. (19) may  be l imited to the f i r s t  five t e r m s  of the expansion,  and the coefficients  an  may  be 
de te rmined  f r o m  the conditions in Eqs.  (19) and (20); a f t e r  t r ans fo rma t ion ,  it is found that  

g (v) = 5.53v - -  8.30v 2 ~- 3.23v 3 + 0.54v< (21) 

The t r a n s f e r  of heat  c a r r i e r s  in the given model ,  with 0 _< v _ 1, is desc r ibed  by dividing it into in-  
finitely thin planes that  a re  impenet rab le  to the flow [3, 4]. The total mean  flux j f r o m  the leading to the t r a i l -  
Lag wall  of the cube (Fig. 2b) is divided into a s e r i e s  of mean fluxes 

] = ], § ]1~ + 2];2 + ]~., (22) 

In Eq. (22), j~ is the total flux pass ing  through the f i r s t  component  (InC) of conductivity A1; Jlz is the total  flux 
pass ing  success ive ly  through the second component  (conductivity A 2) ove r  the length (L - / 2 )  and the f i r s t  c o m -  

.! 
ponent over  the length [2; J12 is the total flux pass ing success ive ly  through the second component over  the length 
(L - I t) and the f i r s t  component  over  the l eng th / l ;  J2 is the total flux pass ing  through the second component.  The 
r e s i s t ance  R i to the passage  of flux Ji with a potential  dif ference AU is by definition 

]i - -  A U / R I ,  (23) 

and the r e s i s t ance  R i of the individual sec t ions  i is  calcula ted f r o m  the s imp le s t  fo rmula  f o r  plane walls  

R i  = L j ( A ~ S i ) ,  (24) 

where  S i, L i a re  the c r o s s - s e c t i o n a l  a r e a  and length of sect ion i. The equivalent  coupling scheme  of the r e -  
s i s t ances  R i in the e l e m e n t a r y  cell,  according to Eq. (22), for  the f luxes is shown in Fig.  3. The total  r e s i s t -  
ance R = L/(AS) is equated to the expres s ion  fo r  R found f r o m  the scheme of Fig.  3 

R -~ = RT I + (R~ -~- R3) -~ + (R~ + Rs) -~ § (R6 + R7) -~ + RT' .  (25) 

Substituting fo r  the r e s i s t ances  R i and geome t r i c  p a r a m e t e r s  of the e l emen ta ry  cell  for  var ious  ranges  of v a r i a -  
t ion in the volume concentra t ion m 1 f r o m  Tables  1 and 2 into Eq. (25), the final r e su l t  obtained a f t e r  appropr ia te  
manipulat ions is 
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T A B L E  1. R e s i s t a n c e  V a l u e s  in  Eq.  (25) 

Range of varia- Ga (G+R~) a (R4+Rs) a=: Rs a 
tion ITI I ( a : A ~ S / L )  = ( R ~ + R D  a 

1L - (1 - - v )~  

m~ ~ mi ~ 0,5 

0,5 ~ ml<(l--mc) 

(1--mc) ~ n h ~  l 

Co 

1 - - ( 1 - - v ) ~  

V-- (V --1) 
~2 

v - - ( v - - 1 ) ~  2 

oo 

1-- (I-- v) 

v - -  ( v - - 1 ) - 7 ~  

0G)-, 

OG)-~ 

TABLE 2. Geometric-Parameter Values in Eqs. (25) and (26) 

Range of varia- --, . [ 
tton m i Si $2 ~ h 

J 

0 < "zl ~ ,~7< 

m~ ~ ml ~ o,5 

0,,5 ~ ,:: 4 (l--m~) 

(I-- m~) ~ , h  4 1 

0 

l 1111 - -  r/l c 

3 l__m~13 

- - 9  - -  �9 - -  1-- l~--2 ll (1--12) 

m~/3 

,~F ~ - E 

nz ~ 13 __ -~ 

m~ ]3 

l--m~] 3 

I 17~ 2 - -  I ~  c 

3 1 m~/3 

0 

0 

(y;//2 

o 

mI/3 
c 

t/3 
/7/c 

A : A1SI H(v)  + Aov 2 " I--(I va)~ +2 ' A~3 , (26) - -  1 - - ( 1 - - v  ) ~  T 

w h e r e  ~ = 1, if  mj  < 0.5, and  G = - 1 ,  if  m 1 - 0.5; the  g e o m e t r i c  p a r a m e t e r s  l l ,  12, $2, $3, S~ a r e  d e t e r m i n e d  in  

accordance with Table 2. 

Turning briefly to the possible physical treatment of the correcting function HI, H I may be determined, on 

the basis of Eqs. (3), (6), and (7), from the expression 

H i - -  SInC L (27) 
SI LInC 

When m e _ m i _< 0.5 and u = 0, it is natural to assume that the mean cross-sectional area of the bridge 

in the model (Fig. 2b) is Sin C, i.e., Sin C = S}, and so 

H1 = (LInc / ,L)% (28) 

The  r a t i o  L I n c / L  c h a r a c t e r i z e s  the  b r a n c h i n g  of InC.  In [5], hi  i n v e s t i g a t i n g  the  InC topo logy ,  i t  w a s  
n o t e d  tha t  L I n c / L  ~ (m 1 - me)  -1 w h e n  m c _ m i <_ 0.5.  In  the  p r e s e n t  c a s e ,  a c c o r d i n g  to  E q s .  (7) and  (11) 

L I n C _  1 ( l ~ m ~ )  l 's  1 (29) 
L 3 1--mII3~ (ml - -mo)  ~ " 

How the length of the infinite cluster changes with variation in the volume concentration is shown in Fig. 4: 

when m i = m 2 = 0.5, the InC length is equal to the length of the sample, i.e., Lin C = L; when m I -+ m c, Lin C ~ oo. 

Further, if it is assumed that the condition Lin C = L is satisfied when m i > 0.5, it follows from Eq. (28) that 

H i = SInc/S ~, i.e., the function H I defined by Eqs. (7), (14), and (16) shows how the current line density in InC 
differs from the current line densities in the model. 

In conclusion, discussion turns to the above assumption in Eq. (I0), regarding the constancy of the cen- 

tral-core dimension 12 of the infinite cluster with concentration variation m c _> m i >__ 0.5. In this case, tran- 

sition to a model with interpenetrating components does not occur strictly at m I = 0.5 but in a certain range m i = 

0.5-0.525 if m c takes one of the values in the range 0.125-0.18. Thus, for example, the given transition occurs 
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Fig. 5. Curves of the generalized conductivity of an extremely in- 
homogeneous medium (9 = 0) as a function of the volume concentra- 
tion: according to numerical calculations of [i] (i) and [6] (2); ac- 
cording to Eq. (26) (3); told according to full-scale experiments for 
different materials [1-3]. 

Fig.  6. Curves  of the genera l ized  conductivity as a function of the 
concentrat ion with var ious  conductivity ra t ios  of the inhomogeneous 
binary medium: 1) according to Eq. (26); 2) compute r  modeling [6]. 

at m i = 0.507 if m e = 0.15 and at m i = 0.525 if m c = 0.18. This model is plausible, since this structure is a 
statistical system, for which probabilistie laws are valid, and hence transition to a model with interpenetrating, 

geometrically equivalent components occurs in a certain range m i = 0.5-0.525. It would be possible to proceed 
by other means, and require that the following condition be satisfied: Transition to a model with geometrically 
equivalent interpenetrating components occurs at m i = 0.5. It is then necessary to assume that the volume con- 
centration of the isolated cluster mc is not constant, but varies. Calculations show that the final values of the 
conductivity A obtained in realizing these models differ insignificantly. In the present work, the first, simpler 
model is realized; other possible variants of this basic model will be considered in the future. 

The dependence A/A i = f(mi) when 9 = 0, plotted from the results of numerical calculations and full-scale 
experiments, is shown in Fig. 5. As follows from Fig. 5, the dependence occupies a definite region, which is 
a consequence not only of the accuracy of the experiments and computer calculations but also of the statistical 
character of the process under study. Curves of A/A i = f(m i) plotted from numerical-modeling data [6] and 
from Eq. (26) lie in the central part of the region. It may be that the two curves are equally likely, although the 

difference between them sometimes reaches 20%, whereas the boundaries of the region are up to 50% apart. 

Curves of A/A t = f(m I, 9) plotted according to the results of numerical modeling [6] and Eq. (26) are 
compared in Fig. 6. Taking account of the above remarks, it may be concluded that there is good agreement 
between the results of the two different methods of analyzing transfer processes through inhomogeneous media. 

NOTATION 

A, effective conductivity; A i, conductivity of the i - th  component;  m i, volume concentra t ion  of the i - th  com-  
ponent; m c, flow threshold;  H l, co r rec t ing  function; v =A2/A1; Lin C, Sin C, length and c r o s s - s e c t i o n a l  a r e a  of 
the infinite c lus te r .  
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KINETICS OF THE SELF-SIMILAR 

COMBUSTION OF POLYDISPERSE 

Yu.  M. G o l d o b i n  

CONDITIONS 

LIQUID FUEL 

OF DIFFUSIONAL 

UDC 621.1.016:536.46 

On the basis of the kinetic equation for the particle distribution function with respect to the 
radius, a method is proposed for calculating the processes of heat and mass transfer in the 
combustion of liquid fuel of a polydisperse melt. 

In the ignition of a liquid-drop or dustlike fuel in various devices, the determining role is played by the 
kinetics of particle combustion in a medium of oxidant diluted with inert gas. The problems arising here are 
very complex in view of their nonlinearity, and therefore they are solved, especially for the case of various 
engineering devices, by means of experimental methods or numerical calculations using a computer. In the 
latter case, the calculation of the combustion kinetics of a polydisperse particle system is undertaken by 
dividing the initial particle size distribution into narrow fractions [1-3]. An alternative approach which has 
been successfully used in calculations of vaporization and solution [4-6] is to use the kinetic equation for the 
particle distribution with respect to the radius. 

In the present work, on the basis of this approach [5, 6], the simplest model of quasidiffusional combustion 
of polydisperse liquid-fuel drops in a volume with adiabatic walls is considered. 

As in [6], it is assumed that the fuel drops are spherical in form; that their mass concentration is small; 
that the product consumption corresponds to stoichiometry of the reaction; and that there is no breakdown or 
coagulation of the drops; that the fuel is injected into gas containing oxidant with a temperature of the medi- 
um Tree.0 above the ignition temperature. The assumptions adopted also hold in real conditions. 

Polydispersity of the drops in the combustion process will be taken into account by the Idnetic equation 
for the particle distribution function with respect to the radius f(r S, t) [5, 6] 

0f (rs~ t) + a_s If (%' t) ~ ' ( r s  t)l = 0 (1) 
Ot 

for which the following relation will hold 

aN=Nor(%, f) drs; f(~,  0)=fo(~) ;  t" fo(%)d%= 1. (2) 
0 

In [6], the distribution function f(rs, t) for self-similar quasisteady conditions of evaporation was obtained 
in general form. Analogous determination of f(r S, t) is possible in combustion if the combustion rate of a single 
fuel drop W(r S, t) is known. 

The function W(rs, t) is obtained on the basis of the quasisteady diffusional combustion of a drop, under 
the assumption that the simplest reaction between fuel vapor and oxidant occurs in the flame. At high temper- 
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